ID Source | ID |
---|---|
PubMed CID | 4287451 |
CHEMBL ID | 1430278 |
CHEBI ID | 105367 |
Synonym |
---|
HMS2585H03 |
MLS000374800 |
smr000254154 |
CHEBI:105367 |
CHEMBL1430278 |
2-[4-(dimethylamino)phenyl]azobenzoic acid [2-(1-azepanyl)-2-oxoethyl] ester |
Q27183091 |
AKOS030643134 |
[2-(azepan-1-yl)-2-oxoethyl] 2-[[4-(dimethylamino)phenyl]diazenyl]benzoate |
benzoic acid, 2-[(1e)-2-[4-(dimethylamino)phenyl]diazenyl]-, 2-(hexahydro-1h-azepin-1-yl)-2-oxoethyl ester |
DTXSID401038325 |
1164530-07-7 |
Z18987773 |
Class | Description |
---|---|
azobenzenes | Any member of the wide class of molecules that share the core azobenzene structure, comprising two phenyl rings linked by a N=N double bond, which may have different functional groups extending from the rings. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, JmjC domain-containing histone demethylation protein 3A | Homo sapiens (human) | Potency | 28.1838 | 0.6310 | 35.7641 | 100.0000 | AID504339 |
Chain A, Ferritin light chain | Equus caballus (horse) | Potency | 44.6684 | 5.6234 | 17.2929 | 31.6228 | AID485281 |
Luciferase | Photinus pyralis (common eastern firefly) | Potency | 1.9012 | 0.0072 | 15.7588 | 89.3584 | AID588342 |
glp-1 receptor, partial | Homo sapiens (human) | Potency | 18.7383 | 0.0184 | 6.8060 | 14.1254 | AID624172; AID624417 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 29.0929 | 0.0041 | 10.8903 | 31.5287 | AID504467 |
TDP1 protein | Homo sapiens (human) | Potency | 21.8528 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
Microtubule-associated protein tau | Homo sapiens (human) | Potency | 8.9125 | 0.1800 | 13.5574 | 39.8107 | AID1460 |
Smad3 | Homo sapiens (human) | Potency | 7.0795 | 0.0052 | 7.8098 | 29.0929 | AID588855 |
apical membrane antigen 1, AMA1 | Plasmodium falciparum 3D7 | Potency | 17.7828 | 0.7079 | 12.1943 | 39.8107 | AID720542 |
glucocerebrosidase | Homo sapiens (human) | Potency | 19.9526 | 0.0126 | 8.1569 | 44.6684 | AID2101 |
bromodomain adjacent to zinc finger domain 2B | Homo sapiens (human) | Potency | 12.5893 | 0.7079 | 36.9043 | 89.1251 | AID504333 |
euchromatic histone-lysine N-methyltransferase 2 | Homo sapiens (human) | Potency | 8.9125 | 0.0355 | 20.9770 | 89.1251 | AID504332 |
chromobox protein homolog 1 | Homo sapiens (human) | Potency | 17.7828 | 0.0060 | 26.1688 | 89.1251 | AID540317 |
nuclear factor erythroid 2-related factor 2 isoform 2 | Homo sapiens (human) | Potency | 23.1093 | 0.0041 | 9.9848 | 25.9290 | AID504444 |
huntingtin isoform 2 | Homo sapiens (human) | Potency | 35.4813 | 0.0006 | 18.4198 | 1,122.0200 | AID1688 |
mitogen-activated protein kinase 1 | Homo sapiens (human) | Potency | 25.1189 | 0.0398 | 16.7842 | 39.8107 | AID1454 |
serine/threonine-protein kinase PLK1 | Homo sapiens (human) | Potency | 37.6858 | 0.1683 | 16.4040 | 67.0158 | AID720504 |
peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 | Homo sapiens (human) | Potency | 67.4555 | 0.4256 | 12.0591 | 28.1838 | AID504891 |
lethal(3)malignant brain tumor-like protein 1 isoform I | Homo sapiens (human) | Potency | 31.6228 | 0.0752 | 15.2253 | 39.8107 | AID485360 |
geminin | Homo sapiens (human) | Potency | 23.1093 | 0.0046 | 11.3741 | 33.4983 | AID624296 |
survival motor neuron protein isoform d | Homo sapiens (human) | Potency | 25.1189 | 0.1259 | 12.2344 | 35.4813 | AID1458 |
muscleblind-like protein 1 isoform 1 | Homo sapiens (human) | Potency | 28.1838 | 0.0041 | 9.9625 | 28.1838 | AID2675 |
Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) | Potency | 79.4328 | 3.9811 | 46.7448 | 112.2020 | AID720708 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
guanyl-nucleotide exchange factor activity | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
protein binding | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
cAMP binding | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
protein-macromolecule adaptor activity | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
small GTPase binding | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
cytosol | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
plasma membrane | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
membrane | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
hippocampal mossy fiber to CA3 synapse | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
plasma membrane | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |